Headline »

| Comments Off on Brain differences in how obsessive-compulsive patients process uncertainty compared to controls

Stern, E., Welsh, R., Gonzalez, R., Fitzgerald, K., Abelson, J., & Taylor, S. (2013). Subjective uncertainty and limbic hyperactivation in obsessive-compulsive disorder. Human Brain Mapping. 34, 1956-1970. DOI: 10.1002/hbm.22038 …

Read the full story »
Decision Making
Design Science
Brain Imaging
Home » Brain Imaging, Decision Making, Featured, Psychology

Regret, disappointment, decisions and the brain

Submitted by No Comment

We use imaging data to help discriminate the role of different emotional states such as regret and disappointment in the context of decision making.

Chua, H., Gonzalez, R., Taylor, S., & Liberzon, I. (2009). Neural bases of regret and disappointment. An fMRI study of emotions and decision making. NeuroImage, 47, 2031-2040. doi:10.1016/j.neuroimage.2009.06.006 (PDF)


Both affective neuroscience and decision science focus on the role of emotions in decisions. Regret and disappointment are emotions experienced with negative decision outcomes. The present research examines the neural substrates of regret and disappointment as well as the role of regret and disappointment in decision making. Experiment 1 compared the subjective experience of regret and disappointment. Participants selected one of two gambles and received different types of feedback during the outcome phase. Despite identical nominal losses, regret induced a more intense dislike of the outcomes and a stronger desire to switch choices than disappointment. Using functional magnetic resonance imaging, Experiment 2 examined the neural correlates of regret and disappointment. Both regret and disappointment activated anterior insula and dorsomedial prefrontal cortex relative to fixation, with greater activation in regret than in disappointment. In contrast to disappointment, regret also showed enhanced activation in the lateral orbitofrontal cortex. These findings suggest that regret and disappointment, emotions experienced during decision-related loss, share a general neural network but differ in both the magnitude of subjective feelings and with regret activating some regions with greater intensity.